Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 147(1): 222-34, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26116027

RESUMO

Alzheimer's disease (AD) is a major cause of dementia in the elderly. Although early-onset (familial) AD is attributed to gene mutations, the cause for late-onset (sporadic) AD, which accounts for 95% of AD cases, is unknown. In this study, we show that exposure of 6-week-old amyloid beta precursor protein (APP)/presenilin (PS1) overexpressing mice, a well-established animal model of AD, and nontransgenic littermates to a cyclic O3 exposure protocol, which mimics environmental exposure episodes, accelerated learning/memory function loss in male APP/PS1 mice but not in female APP/PS1 mice or nontransgenic littermates. Female APP/PS1 mice had higher brain levels of amyloid beta peptide (Aß42) and Aß40, compared with male APP/PS1 mice; O3 exposure, however, had no significant effect on brain Aß load in either male or female mice. Our results further show that male APP/PS1 mice had lower levels of antioxidants (glutathione and ascorbate) and experienced augmented induction of NADPH oxidases, lipid peroxidation, and neuronal apoptosis upon O3 exposure, compared with female APP/PS1 mice. No significant effect of O3 on any of these parameters was detected in nontransgenic littermates. In vitro studies further show that 4-hydroxynonenal, a lipid peroxidation product which was increased in the plasma and cortex/hippocampus of O3-exposed male APP/PS1 mice, induced neuroblastoma cell apoptosis. Together, the results suggest that O3 exposure per se may not cause AD but can synergize with genetic risk factors to accelerate the pathophysiology of AD in genetically predisposed populations. The results also suggest that males may be more sensitive to O3-induced neuropathophysiology than females due to lower levels of antioxidants.


Assuntos
Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/psicologia , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/psicologia , Doenças do Sistema Nervoso/induzido quimicamente , Doenças do Sistema Nervoso/psicologia , Ozônio/toxicidade , Peptídeos beta-Amiloides/biossíntese , Peptídeos beta-Amiloides/genética , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Feminino , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , NADPH Oxidases/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/genética , Presenilinas/biossíntese , Presenilinas/genética , Caracteres Sexuais
2.
Nat Chem Biol ; 11(7): 504-10, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26006011

RESUMO

The current perspective holds that the generation of secondary signaling mediators from nitrite (NO2(-)) requires acidification to nitrous acid (HNO2) or metal catalysis. Herein, the use of stable isotope-labeled NO2(-) and LC-MS/MS analysis of products reveals that NO2(-) also participates in fatty acid nitration and thiol S-nitrosation at neutral pH. These reactions occur in the absence of metal centers and are stimulated by autoxidation of nitric oxide ((•)NO) via the formation of symmetrical dinitrogen trioxide (nitrous anhydride, symN2O3). Although theoretical models have predicted physiological symN2O3 formation, its generation is now demonstrated in aqueous reaction systems, cell models and in vivo, with the concerted reactions of (•)NO and NO2(-) shown to be critical for symN2O3 formation. These results reveal new mechanisms underlying the NO2(-) propagation of (•)NO signaling and the regulation of both biomolecule function and signaling network activity via NO2(-)-dependent nitrosation and nitration reactions.


Assuntos
Macrófagos/química , Nitratos/química , Óxido Nítrico/química , Nitritos/química , Óxidos de Nitrogênio/química , Ácido Nitroso/química , Animais , Linhagem Celular , Glutationa/química , Glutationa/metabolismo , Concentração de Íons de Hidrogênio , Inflamação/induzido quimicamente , Inflamação/metabolismo , Cinética , Ácidos Linoleicos Conjugados/química , Ácidos Linoleicos Conjugados/metabolismo , Ácidos Linoleicos Conjugados/farmacologia , Lipopolissacarídeos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Nitritos/farmacologia , Isótopos de Nitrogênio , Óxidos de Nitrogênio/metabolismo , Nitrosação , Ácido Nitroso/metabolismo , Isótopos de Oxigênio
3.
Redox Biol ; 2: 52-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25544660

RESUMO

Ozone (O3) is a serious public health concern. Recent findings indicate that the damaging health effects of O3 extend to multiple systemic organ systems. Herein, we hypothesize that O3 inhalation will cause downstream alterations to the liver. To test this, male Sprague-Dawley rats were exposed to 0.5ppm O3 for 8h/day for 5 days. Plasma liver enzyme measurements showed that 5 day O3 exposure did not cause liver cell death. Proteomic and mass spectrometry analysis identified 10 proteins in the liver that were significantly altered in abundance following short-term O3 exposure and these included several stress responsive proteins. Glucose-regulated protein 78 and protein disulfide isomerase increased, whereas glutathione S-transferase M1 was significantly decreased by O3 inhalation. In contrast, no significant changes were detected for the stress response protein heme oxygenase-1 or cytochrome P450 2E1 and 2B in liver of O3 exposed rats compared to controls. In summary, these results show that an environmentally-relevant exposure to inhaled O3 can alter the expression of select proteins in the liver. We propose that O3 inhalation may represent an important unrecognized factor that can modulate hepatic metabolic functions.


Assuntos
Fígado/efeitos dos fármacos , Fígado/metabolismo , Ozônio/administração & dosagem , Ozônio/farmacologia , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Administração por Inalação , Animais , Fígado/enzimologia , Masculino , Ratos , Ratos Sprague-Dawley
4.
PLoS One ; 9(3): e90401, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24594710

RESUMO

Exposure to ozone has been associated with increased incidence of respiratory morbidity in humans; however the mechanism(s) behind the enhancement of susceptibility are unclear. We have previously reported that exposure to episodic ozone during postnatal development results in an attenuated peripheral blood cytokine response to lipopolysaccharide (LPS) that persists with maturity. As the lung is closely interfaced with the external environment, we hypothesized that the conducting airway epithelium of neonates may also be a target of immunomodulation by ozone. To test this hypothesis, we evaluated primary airway epithelial cell cultures derived from juvenile rhesus macaque monkeys with a prior history of episodic postnatal ozone exposure. Innate immune function was measured by expression of the proinflammatory cytokines IL-6 and IL-8 in primary cultures established following in vivo LPS challenge or, in response to in vitro LPS treatment. Postnatal ozone exposure resulted in significantly attenuated IL-6 mRNA and protein expression in primary cultures from juvenile animals; IL-8 mRNA was also significantly reduced. The effect of antecedent ozone exposure was modulated by in vivo LPS challenge, as primary cultures exhibited enhanced cytokine expression upon secondary in vitro LPS treatment. Assessment of potential IL-6-targeting microRNAs miR-149, miR-202, and miR-410 showed differential expression in primary cultures based upon animal exposure history. Functional assays revealed that miR-149 is capable of binding to the IL-6 3' UTR and decreasing IL-6 protein synthesis in airway epithelial cell lines. Cumulatively, our findings suggest that episodic ozone during early life contributes to the molecular programming of airway epithelium, such that memory from prior exposures is retained in the form of a dysregulated IL-6 and IL-8 response to LPS; differentially expressed microRNAs such as miR-149 may play a role in the persistent modulation of the epithelial innate immune response towards microbes in the mature lung.


Assuntos
Epitélio/imunologia , Imunidade Inata/genética , Pulmão/imunologia , Macaca mulatta/imunologia , MicroRNAs/genética , Ozônio/farmacologia , Regiões 3' não Traduzidas/genética , Animais , Animais Recém-Nascidos , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epitélio/efeitos dos fármacos , Imunofluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunidade Inata/efeitos dos fármacos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Lipopolissacarídeos/farmacologia , Macaca mulatta/genética , Masculino , MicroRNAs/metabolismo , Ligação Proteica/efeitos dos fármacos
5.
Am J Respir Cell Mol Biol ; 49(5): 710-20, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23600597

RESUMO

The immune mechanisms for neonatal susceptibility to respiratory pathogens are poorly understood. Given that mucosal surfaces serve as a first line of host defense, we hypothesized that the innate immune response to infectious agents may be developmentally regulated in airway epithelium. To test this hypothesis, we determined whether the expression of IL-8 and IL-6 in airway epithelium after LPS exposure is dependent on chronological age. Tracheas from infant, juvenile, and adult rhesus monkeys were first exposed to LPS ex vivo, and then processed for air-liquid interface primary airway epithelial cell cultures and secondary LPS treatment in vitro. Compared with adult cultures, infant and juvenile cultures expressed significantly reduced concentrations of IL-8 after LPS treatment. IL-8 protein in cultures increased with animal age, whereas LPS-induced IL-6 protein was predominantly associated with juvenile cultures. Toll-like receptor (TLR) pathway RT-PCR arrays showed differential expressions of multiple mRNAs in infant cultures relative to adult cultures, including IL-1α, TLR10, and the peptidoglycan recognition protein PGLYRP2. To determine whether the age-dependent cytokine response to LPS is reflective of antecedent exposures, we assessed primary airway epithelial cell cultures established from juvenile monkeys housed in filtered air since birth. Filtered air-housed animal cultures exhibited LPS-induced IL-8 and IL-6 expression that was discordant with age-matched ambient air-housed animals. A single LPS aerosol in vivo also affected this cytokine profile. Cumulatively, our findings demonstrate that the innate immune response to LPS in airway epithelium is variable with age, and may be modulated by previous environmental exposures.


Assuntos
Envelhecimento/imunologia , Células Epiteliais/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Mucosa Respiratória/efeitos dos fármacos , Aerossóis , Fatores Etários , Animais , Animais Recém-Nascidos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Exposição Ambiental , Células Epiteliais/imunologia , Regulação da Expressão Gênica , Mediadores da Inflamação/metabolismo , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Macaca mulatta , Masculino , RNA Mensageiro/metabolismo , Mucosa Respiratória/imunologia , Técnicas de Cultura de Tecidos , Receptores Toll-Like/efeitos dos fármacos , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
6.
Am J Physiol Lung Cell Mol Physiol ; 303(12): L1079-86, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23087018

RESUMO

Pulmonary dendritic cells (DCs) are among the first responders to inhaled environmental stimuli such as ozone (O(3)), which has been shown to activate these cells. O(3) reacts with epithelial lining fluid (ELF) components in an anatomically site-specific manner dictated by O(3) concentration, airway flow patterns, and ELF substrate concentration. Accordingly, the anatomical distribution of ELF reaction products and airway injury are hypothesized to produce selective DC maturation differentially within the airways. To investigate how O(3) affects regional airway DC populations, we utilized a model of O(3)-induced pulmonary inflammation, wherein C57BL/6 mice were exposed to 0.8 ppm O(3) 8 h/day for 1, 3, and 5 days. This model induced mild inflammation and no remarkable epithelial injury. Tracheal, but not more distant airway sites, and mediastinal lymph node (MLN) DC numbers were increased significantly after the third exposure day. The largest increase in each tissue was of the CD103(+) DC phenotype. After 3 days of exposure, fewer DCs expressed CD80, CD40, and CCR7, and, at this same time point, total MLN T cell numbers increased. Together, these data demonstrate that O(3) exposure induced site-specific and phenotype changes in the pulmonary and regional lymph node DC populations. Possibly contributing to ozone-mediated asthma perturbation, the phenotypic changes to DCs within pulmonary regions may alter responses to antigenic stimuli. Decreased costimulatory molecule expression within the MLN suggests induction of tolerance mechanisms; increased tracheal DC number may raise the potential for allergic sensitization and asthmatic exacerbation, thus overcoming O(3)-induced decrements in costimulatory molecule expression.


Assuntos
Antígenos CD/metabolismo , Antígeno CD11b/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Exposição Ambiental , Cadeias alfa de Integrinas/metabolismo , Oxidantes Fotoquímicos/farmacologia , Ozônio/toxicidade , Animais , Antígenos CD/análise , Antígeno B7-1/análise , Antígeno CD11b/análise , Antígenos CD40/análise , Cadeias alfa de Integrinas/análise , Pulmão/efeitos dos fármacos , Linfonodos/efeitos dos fármacos , Contagem de Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/induzido quimicamente , Receptores CCR7/análise , Traqueia/efeitos dos fármacos
7.
Free Radic Biol Med ; 53(7): 1431-9, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22917977

RESUMO

Cl(2) gas toxicity is complex and occurs during and after exposure, leading to acute lung injury (ALI) and reactive airway syndrome (RAS). Moreover, Cl(2) exposure can occur in diverse situations encompassing mass casualty scenarios, highlighting the need for postexposure therapies that are efficacious and amenable to rapid and easy administration. In this study, we assessed the efficacy of a single dose of nitrite (1 mg/kg) to decrease ALI when administered to rats via intraperitoneal (ip) or intramuscular (im) injection 30 min after Cl(2) exposure. Exposure of rats to Cl(2) gas (400 ppm, 30 min) significantly increased ALI and caused RAS 6-24h postexposure as indexed by BAL sampling of lung surface protein and polymorphonucleocytes (PMNs) and increased airway resistance and elastance before and after methacholine challenge. Intraperitoneal nitrite decreased Cl(2)-dependent increases in BAL protein but not PMNs. In contrast im nitrite decreased BAL PMN levels without decreasing BAL protein in a xanthine oxidoreductase-dependent manner. Histological evaluation of airways 6h postexposure showed significant bronchial epithelium exfoliation and inflammatory injury in Cl(2)-exposed rats. Both ip and im nitrite improved airway histology compared to Cl(2) gas alone, but more coverage of the airway by cuboidal or columnar epithelium was observed with im compared to ip nitrite. Airways were rendered more sensitive to methacholine-induced resistance and elastance after Cl(2) gas exposure. Interestingly, im nitrite, but not ip nitrite, significantly decreased airway sensitivity to methacholine challenge. Further evaluation and comparison of im and ip therapy showed a twofold increase in circulating nitrite levels with the former, which was associated with reversal of post-Cl(2) exposure-dependent increases in circulating leukocytes. Halving the im nitrite dose resulted in no effect in PMN accumulation but significant reduction of BAL protein levels, indicating a distinct nitrite dose dependence for inhibition of Cl(2)-dependent lung permeability and inflammation. These data highlight the potential for nitrite as a postexposure therapeutic for Cl(2) gas-induced lung injury and also suggest that administration modality is a key consideration in nitrite therapeutics.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Pulmão/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Nitrito de Sódio/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Animais , Testes de Provocação Brônquica , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Cloro , Exposição por Inalação , Injeções Intramusculares , Injeções Intraperitoneais , Pulmão/imunologia , Pulmão/patologia , Masculino , Cloreto de Metacolina/administração & dosagem , Neutrófilos/imunologia , Neutrófilos/patologia , Ratos , Ratos Sprague-Dawley , Nitrito de Sódio/uso terapêutico
8.
Free Radic Biol Med ; 53(4): 951-61, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22705369

RESUMO

Tissues are exposed to exogenous and endogenous nitrogen dioxide ((·)NO(2)), which is the terminal agent in protein tyrosine nitration. Besides iron chelation, the hydroxamic acid (HA) desferrioxamine (DFO) shows multiple functionalities including nitration inhibition. To investigate mechanisms whereby DFO affects 3-nitrotyrosine (3-NT) formation, we utilized gas-phase (·)NO(2) exposures, to limit introduction of other reactive species, and a lung surface model wherein red cell membranes (RCM) were immobilized under a defined aqueous film. When RCM were exposed to ()NO(2) covered by +/- DFO: (i) DFO inhibited 3-NT formation more effectively than other HA and non-HA chelators; (ii) 3-NT inhibition occurred at very low[DFO] for prolonged times; and (iii) 3-NT formation was iron independent but inhibition required DFO present. DFO poorly reacted with (·)NO(2) compared to ascorbate, assessed via (·)NO(2) reactive absorption and aqueous-phase oxidation rates, yet limited 3-NT formation at far lower concentrations. DFO also inhibited nitration under aqueous bulk-phase conditions, and inhibited 3-NT generated by active myeloperoxidase "bound" to RCM. Per the above and kinetic analyses suggesting preferential DFO versus (·)NO(2) reaction within membranes, we conclude that DFO inhibits 3-NT formation predominantly by facile repair of the tyrosyl radical intermediate, which prevents (·)NO(2) addition, and thus nitration, and potentially influences biochemical functionalities.


Assuntos
Desferroxamina/farmacologia , Sequestradores de Radicais Livres/farmacologia , Proteínas/metabolismo , Tirosina/análogos & derivados , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Desferroxamina/química , Eritrócitos/efeitos dos fármacos , Eritrócitos/enzimologia , Eritrócitos/metabolismo , Sequestradores de Radicais Livres/química , Humanos , Pulmão/efeitos dos fármacos , Pulmão/fisiologia , Dióxido de Nitrogênio/química , Dióxido de Nitrogênio/farmacologia , Oxidantes Fotoquímicos/química , Oxidantes Fotoquímicos/farmacologia , Peroxidase/metabolismo , Proteínas/química , Sideróforos/química , Sideróforos/farmacologia , Tirosina/química , Tirosina/metabolismo
9.
Free Radic Biol Med ; 53(3): 554-63, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22634145

RESUMO

The concentration of glutathione (GSH), the most abundant intracellular free thiol and an important antioxidant, is decreased in the lung in both fibrotic diseases and experimental fibrosis models. The underlying mechanisms and biological significance of GSH depletion, however, remain unclear. Transforming growth factor ß (TGF-ß) is the most potent and ubiquitous profibrogenic cytokine and its expression is increased in almost all fibrotic diseases. In this study, we show that increasing TGF-ß1 expression in mouse lung to a level comparable to those found in lung fibrotic diseases by intranasal instillation of AdTGF-ß1(223/225), an adenovirus expressing constitutively active TGF-ß1, suppressed the expression of both catalytic and modifier subunits of glutamate-cysteine ligase (GCL), the rate-limiting enzyme in de novo GSH synthesis, decreased GSH concentration, and increased protein and lipid peroxidation in mouse lung. Furthermore, we show that increasing TGF-ß1 expression activated JNK and induced activating transcription factor 3, a transcriptional repressor involved in the regulation of the catalytic subunit of GCL, in mouse lung. Control virus (AdDL70-3) had no significant effect on any of these parameters, compared to saline-treated control. Concurrent with GSH depletion, TGF-ß1 induced lung epithelial apoptosis and robust pulmonary fibrosis. Importantly, lung GSH levels returned to normal, whereas fibrosis persisted at least 21 days after TGF-ß1 instillation. Together, the data suggest that increased TGF-ß1 expression may contribute to the GSH depletion observed in pulmonary fibrosis diseases and that GSH depletion may be an early event in, rather than a consequence of, fibrosis development.


Assuntos
Regulação Enzimológica da Expressão Gênica , Glutamato-Cisteína Ligase/metabolismo , Estresse Oxidativo , Fibrose Pulmonar/enzimologia , Fator de Crescimento Transformador beta1/fisiologia , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Animais , Apoptose , Ácido Ascórbico/metabolismo , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Células Epiteliais/fisiologia , Glutamato-Cisteína Ligase/genética , Dissulfeto de Glutationa/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Peroxidação de Lipídeos , Pulmão/enzimologia , Pulmão/patologia , Camundongos , Oxirredução , Fibrose Pulmonar/metabolismo , Mucosa Respiratória/patologia , Transcrição Gênica , Fator de Crescimento Transformador beta1/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
10.
Toxicol Sci ; 128(2): 500-16, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22584687

RESUMO

Computational fluid dynamics (CFD) models are useful for predicting site-specific dosimetry of airborne materials in the respiratory tract and elucidating the importance of species differences in anatomy, physiology, and breathing patterns. We improved the imaging and model development methods to the point where CFD models for the rat, monkey, and human now encompass airways from the nose or mouth to the lung. A total of 1272, 2172, and 135 pulmonary airways representing 17±7, 19±9, or 9±2 airway generations were included in the rat, monkey and human models, respectively. A CFD/physiologically based pharmacokinetic model previously developed for acrolein was adapted for these anatomically correct extended airway models. Model parameters were obtained from the literature or measured directly. Airflow and acrolein uptake patterns were determined under steady-state inhalation conditions to provide direct comparisons with prior data and nasal-only simulations. Results confirmed that regional uptake was sensitive to airway geometry, airflow rates, acrolein concentrations, air:tissue partition coefficients, tissue thickness, and the maximum rate of metabolism. Nasal extraction efficiencies were predicted to be greatest in the rat, followed by the monkey, and then the human. For both nasal and oral breathing modes in humans, higher uptake rates were predicted for lower tracheobronchial tissues than either the rat or monkey. These extended airway models provide a unique foundation for comparing material transport and site-specific tissue uptake across a significantly greater range of conducting airways in the rat, monkey, and human than prior CFD models.


Assuntos
Fenômenos Fisiológicos Respiratórios/efeitos dos fármacos , Acroleína/farmacocinética , Acroleína/farmacologia , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Macaca mulatta , Masculino , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
11.
Anat Rec (Hoboken) ; 295(6): 1027-44, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22528468

RESUMO

We examine a previously published branch-based approach for modeling airway diameters that is predicated on the assumption of self-consistency across all levels of the tree. We mathematically formulate this assumption, propose a method to test it and develop a more general model to be used when the assumption is violated. We discuss the effect of measurement error on the estimated models and propose methods that take account of error. The methods are illustrated on data from MRI and CT images of silicone casts of two rats, two normal monkeys, and one ozone-exposed monkey. Our results showed substantial departures from self-consistency in all five subjects. When departures from self-consistency exist, we do not recommend using the self-consistency model, even as an approximation, as we have shown that it may likely lead to an incorrect representation of the diameter geometry. The new variance model can be used instead. Measurement error has an important impact on the estimated morphometry models and needs to be addressed in the analysis.


Assuntos
Brônquios/anatomia & histologia , Macaca mulatta/anatomia & histologia , Modelos Anatômicos , Ratos Sprague-Dawley/anatomia & histologia , Animais , Imageamento por Ressonância Magnética , Masculino , Ratos , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X
12.
J Aerosol Med Pulm Drug Deliv ; 25(6): 333-41, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22393907

RESUMO

BACKGROUND: Chlorine (Cl(2))-induced lung injury is a serious public health threat that may result from industrial and household accidents. Post-Cl(2) administration of aerosolized ascorbate in rodents decreased lung injury and mortality. However, the extent to which aerosolized ascorbate augments depleted ascorbate stores in distal lung compartments has not been assessed. METHODS: We exposed rats to Cl(2) (300 ppm for 30 min) and returned them to room air. Within 15-30 min postexposure, rats breathed aerosolized ascorbate and desferal or vehicle (mean particle size 3.3 µm) through a nose-only exposure system for 60 min and were euthanized. We measured the concentrations of reduced ascorbate in the bronchoalveolar lavage (BAL), plasma, and lung tissues with high-pressure liquid chromatography, protein plasma concentration in the BAL, and the volume of the epithelia lining fluid (ELF). RESULTS: Cl(2)-exposed rats that breathed aerosolized vehicle had lower values of ascorbate in their BAL, ELF, and lung tissues compared to air-breathing rats. Delivery of aerosolized ascorbate increased reduced ascorbate in BAL, ELF, lung tissues, and plasma of both Cl(2) and air-exposed rats without causing lung injury. Based on mean diameter of aerosolized particles and airway sizes we calculated that approximately 5% and 1% of inhaled ascorbate was deposited in distal lung regions of air and Cl(2)-exposed rats, respectively. Significantly higher ascorbate levels were present in the BAL of Cl(2)-exposed rats when aerosol delivery was initiated 1 h post-Cl(2). CONCLUSIONS: Aerosol administration is an effective, safe, and noninvasive method for the delivery of low molecular weight antioxidants to the lungs of Cl(2)-exposed individuals for the purpose of decreasing morbidity and mortality. Delivery is most effective when initiated 1 h postexposure when the effects of Cl(2) on minute ventilation subside.


Assuntos
Ácido Ascórbico/administração & dosagem , Cloro/toxicidade , Sistemas de Liberação de Medicamentos , Lesão Pulmonar/tratamento farmacológico , Administração por Inalação , Aerossóis , Animais , Antioxidantes/administração & dosagem , Antioxidantes/efeitos adversos , Antioxidantes/farmacocinética , Ácido Ascórbico/efeitos adversos , Ácido Ascórbico/farmacocinética , Líquido da Lavagem Broncoalveolar/química , Cromatografia Líquida de Alta Pressão , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Masculino , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Distribuição Tecidual
13.
J Appl Physiol (1985) ; 112(10): 1659-69, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22403348

RESUMO

Low concentrations of inhaled hydrogen sulfide (H(2)S) induce hypometabolism in mice. Biological effects of H(2)S in in vitro systems are augmented by lowering O(2) tension. Based on this, we hypothesized that reduced O(2) tension would increase H(2)S-mediated hypometabolism in vivo. To test this, male Sprague-Dawley rats were exposed to 80 ppm H(2)S at 21% O(2) or 10.5% O(2) for 6 h followed by 1 h recovery at room air. Rats exposed to H(2)S in 10.5% O(2) had significantly decreased body temperature and respiration compared with preexposure levels. Heart rate was decreased by H(2)S administered under both O(2) levels and did not return to preexposure levels after 1 h recovery. Inhaled H(2)S caused epithelial exfoliation in the lungs and increased plasma creatine kinase-MB activity. The effect of inhaled H(2)S on prosurvival signaling was also measured in heart and liver. H(2)S in 21% O(2) increased Akt-P(Ser473) and GSK-3ß-P(Ser9) in the heart whereas phosphorylation was decreased by H(2)S in 10.5% O(2), indicating O(2) dependence in regulating cardiac signaling pathways. Inhaled H(2)S and low O(2) had no effect on liver Akt. In summary, we found that lower O(2) was needed for H(2)S-dependent hypometabolism in rats compared with previous findings in mice. This highlights the possibility of species differences in physiological responses to H(2)S. Inhaled H(2)S exposure also caused tissue injury to the lung and heart, which raises concerns about the therapeutic safety of inhaled H(2)S. In conclusion, these findings demonstrate the importance of O(2) in influencing physiological and signaling effects of H(2)S in mammalian systems.


Assuntos
Sulfeto de Hidrogênio/administração & dosagem , Hipóxia/metabolismo , Miocárdio/metabolismo , Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Administração por Inalação , Animais , Regulação da Temperatura Corporal/efeitos dos fármacos , Creatina Quinase Forma MB/sangue , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Frequência Cardíaca/efeitos dos fármacos , Sulfeto de Hidrogênio/toxicidade , Hipóxia/patologia , Hipóxia/fisiopatologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Miocárdio/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Respiração/efeitos dos fármacos , Serina , Fatores de Tempo
14.
Am J Respir Cell Mol Biol ; 46(5): 599-606, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22162906

RESUMO

We assessed the safety and efficacy of combined intravenous and aerosolized antioxidant administration to attenuate chlorine gas-induced airway alterations when administered after exposure. Adult male Sprague-Dawley rats were exposed to air or 400 parts per million (ppm) chlorine (a concentration likely to be encountered in the vicinity of industrial accidents) in environmental chambers for 30 minutes, and returned to room air, and they then received a single intravenous injection of ascorbic acid and deferoxamine or saline. At 1 hour and 15 hours after chlorine exposure, the rats were treated with aerosolized ascorbate and deferoxamine or vehicle. Lung antioxidant profiles, plasma ascorbate concentrations, airway morphology, and airway reactivity were evaluated at 24 hours and 7 days after chlorine exposure. At 24 hours after exposure, chlorine-exposed rats had significantly lower pulmonary ascorbate and reduced glutathione concentrations. Treatment with antioxidants restored depleted ascorbate in lungs and plasma. At 7 days after exposure, in chlorine-exposed, vehicle-treated rats, the thickness of the proximal airways was 60% greater than in control rats, with twice the amount of mucosubstances. Airway resistance in response to methacholine challenge was also significantly elevated. Combined treatment with intravenous and aerosolized antioxidants restored airway morphology, the amount of airway mucosubstances, and airway reactivity to control levels by 7 days after chlorine exposure. Our results demonstrate for the first time, to the best of our knowledge, that severe injury to major airways in rats exposed to chlorine, as characterized by epithelial hyperplasia, mucus accumulation, and airway hyperreactivity, can be reversed in a safe and efficacious manner by the post-exposure administration of ascorbate and deferoxamine.


Assuntos
Antioxidantes/uso terapêutico , Brônquios/patologia , Cloro/toxicidade , Traqueia/patologia , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/metabolismo , Brônquios/efeitos dos fármacos , Testes de Provocação Brônquica , Cloro/administração & dosagem , Glutationa/metabolismo , Hiperplasia/prevenção & controle , Exposição por Inalação , Pulmão/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Traqueia/efeitos dos fármacos
15.
Am J Physiol Lung Cell Mol Physiol ; 300(3): L462-71, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21131396

RESUMO

Early life is a dynamic period of growth for the lung and immune system. We hypothesized that ambient ozone exposure during postnatal development can affect the innate immune response to other environmental challenges in a persistent fashion. To test this hypothesis, we exposed infant rhesus macaque monkeys to a regimen of 11 ozone cycles between 30 days and 6 mo of age; each cycle consisted of ozone for 5 days (0.5 parts per million at 8 h/day) followed by 9 days of filtered air. Animals were subsequently housed in filtered air conditions and challenged with a single dose of inhaled LPS at 1 yr of age. After completion of the ozone exposure regimen at 6 mo of age, total peripheral blood leukocyte and polymorphonuclear leukocyte (PMN) numbers were reduced, whereas eosinophil counts increased. In lavage, total cell numbers at 6 mo were not affected by ozone, however, there was a significant reduction in lymphocytes and increased eosinophils. Following an additional 6 mo of filtered air housing, only monocytes were increased in blood and lavage in previously exposed animals. In response to LPS challenge, animals with a prior history of ozone showed an attenuated peripheral blood and lavage PMN response compared with controls. In vitro stimulation of peripheral blood mononuclear cells with LPS resulted in reduced secretion of IL-6 and IL-8 protein in association with prior ozone exposure. Collectively, our findings suggest that ozone exposure during infancy can result in a persistent effect on both pulmonary and systemic innate immune responses later in life.


Assuntos
Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Macaca mulatta/sangue , Ozônio/farmacologia , Envelhecimento/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/metabolismo , Inflamação/patologia , Exposição por Inalação , Contagem de Leucócitos , Leucócitos/citologia , Leucócitos/efeitos dos fármacos , Pulmão/metabolismo , Masculino
16.
Am J Physiol Lung Cell Mol Physiol ; 300(2): L242-54, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21131400

RESUMO

Children chronically exposed to high levels of ozone (O(3)), the principal oxidant pollutant in photochemical smog, are more vulnerable to respiratory illness and infections. The specific factors underlying this differential susceptibility are unknown but may be related to air pollutant-induced nasal alterations during postnatal development that impair the normal physiological functions (e.g., filtration and mucociliary clearance) serving to protect the more distal airways from inhaled xenobiotics. In adult animal models, chronic ozone exposure is associated with adaptations leading to a decrease in airway injury. The purpose of our study was to determine whether cyclic ozone exposure induces persistent morphological and biochemical effects on the developing nasal airways of infant monkeys early in life. Infant (180-day-old) rhesus macaques were exposed to 5 consecutive days of O(3) [0.5 parts per million (ppm), 8 h/day; "1-cycle"] or filtered air (FA) or 11 biweekly cycles of O(3) (FA days 1-9; 0.5 ppm, 8 h/day on days 10-14; "11-cycle"). The left nasal passage was processed for light microscopy and morphometric analysis. Mucosal samples from the right nasal passage were processed for GSH, GSSG, ascorbate (AH(2)), and uric acid (UA) concentration. Eleven-cycle O(3) induced persistent rhinitis, squamous metaplasia, and epithelial hyperplasia in the anterior nasal airways of infant monkeys, resulting in a 39% increase in the numeric density of epithelial cells. Eleven-cycle O(3) also induced a 65% increase in GSH concentrations at this site. The persistence of epithelial hyperplasia was positively correlated with changes in GSH. These results indicate that early life ozone exposure causes persistent nasal epithelial alterations in infant monkeys and provide a potential mechanism for the increased susceptibility to respiratory illness exhibited by children in polluted environments.


Assuntos
Poluentes Atmosféricos/toxicidade , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/patologia , Ozônio/toxicidade , Rinite/induzido quimicamente , Rinite/patologia , Animais , Antioxidantes/metabolismo , Criança , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Glutamato-Cisteína Ligase/genética , Glutationa/metabolismo , Humanos , Macaca mulatta , Masculino , Metaplasia/patologia , Mucosa Nasal/metabolismo , Neutrófilos/patologia , Ozônio/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rinite/genética , Rinite/metabolismo
17.
Am J Respir Cell Mol Biol ; 45(2): 386-92, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21131440

RESUMO

Chlorine (Cl(2)) gas exposure poses an environmental and occupational hazard that frequently results in acute lung injury. There is no effective treatment. We assessed the efficacy of antioxidants, administered after exposure, in decreasing mortality and lung injury in C57BL/6 mice exposed to 600 ppm of Cl(2) for 45 minutes and returned to room air. Ascorbate and deferoxamine were administered intramuscularly every 12 hours and by nose-only inhalation every 24 hours for 3 days starting after 1 hour after exposure. Control mice were exposed to Cl(2) and treated with vehicle (saline or water). Mortality was reduced fourfold in the treatment group compared with the control group (22 versus 78%; P = 0.007). Surviving animals in the treatment group had significantly lower protein concentrations, cell counts, and epithelial cells in their bronchoalveolar lavage (BAL). Lung tissue ascorbate correlated inversely with BAL protein as well as with the number of neutrophils and epithelial cells. In addition, lipid peroxidation was reduced threefold in the BAL of mice treated with ascorbate and deferoxamine when compared with the control group. Administration of ascorbate and deferoxamine reduces mortality and decreases lung injury through reduction of alveolar-capillary permeability, inflammation, and epithelial sloughing and lipid peroxidation.


Assuntos
Lesão Pulmonar Aguda/mortalidade , Lesão Pulmonar Aguda/prevenção & controle , Ácido Ascórbico/uso terapêutico , Cloro/toxicidade , Desferroxamina/uso terapêutico , Lesão Pulmonar Aguda/patologia , Animais , Antioxidantes/uso terapêutico , Substâncias para a Guerra Química/toxicidade , Cromatografia Líquida de Alta Pressão , Exposição por Inalação , Injeções Intramusculares , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/mortalidade , Pneumonia/patologia , Pneumonia/prevenção & controle , Sideróforos/uso terapêutico , Taxa de Sobrevida
18.
Am J Respir Cell Mol Biol ; 45(2): 419-25, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21131444

RESUMO

Chlorine gas (Cl(2)) exposure during accidents or in the military setting results primarily in injury to the lungs. However, the potential for Cl(2) exposure to promote injury to the systemic vasculature leading to compromised vascular function has not been studied. We hypothesized that Cl(2) promotes extrapulmonary endothelial dysfunction characterized by a loss of endothelial nitric oxide synthase (eNOS)-derived signaling. Male Sprague Dawley rats were exposed to Cl(2) for 30 minutes, and eNOS-dependent vasodilation of aorta as a function of Cl(2) dose (0-400 ppm) and time after exposure (0-48 h) were determined. Exposure to Cl(2) (250-400 ppm) significantly inhibited eNOS-dependent vasodilation (stimulated by acetycholine) at 24 to 48 hours after exposure without affecting constriction responses to phenylephrine or vasodilation responses to an NO donor, suggesting decreased NO formation. Consistent with this hypothesis, eNOS protein expression was significantly decreased (∼ 60%) in aorta isolated from Cl(2)-exposed versus air-exposed rats. Moreover, inducible nitric oxide synthase (iNOS) mRNA was up-regulated in circulating leukocytes and aorta isolated 24 hours after Cl(2) exposure, suggesting stimulation of inflammation in the systemic vasculature. Despite decreased eNOS expression and activity, no changes in mean arterial blood pressure were observed. However, injection of 1400W, a selective inhibitor of iNOS, increased mean arterial blood pressure only in Cl(2)-exposed animals, suggesting that iNOS-derived NO compensates for decreased eNOS-derived NO. These results highlight the potential for Cl(2) exposure to promote postexposure systemic endothelial dysfunction via disruption of vascular NO homeostasis mechanisms.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/enzimologia , Cloro/toxicidade , Endotélio Vascular/enzimologia , Endotélio Vascular/patologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Aorta/enzimologia , Pressão Sanguínea/efeitos dos fármacos , Western Blotting , Substâncias para a Guerra Química/toxicidade , Citocinas/metabolismo , Endotélio Vascular/efeitos dos fármacos , Imunofluorescência , Exposição por Inalação , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Vasodilatação/efeitos dos fármacos
19.
Am J Physiol Lung Cell Mol Physiol ; 300(3): L362-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21148791

RESUMO

Nitrite (NO(2)(-)) has been shown to limit injury to the heart, liver, and kidneys in various models of ischemia-reperfusion injury. Potential protective effects of systemic NO(2)(-) in limiting lung injury or enhancing repair have not been documented. We assessed the efficacy and mechanisms by which postexposure intraperitoneal injections of NO(2)(-) mitigate chlorine (Cl(2))-induced lung injury in rats. Rats were exposed to Cl(2) (400 ppm) for 30 min and returned to room air. NO(2)(-) (1 mg/kg) or saline was administered intraperitoneally at 10 min and 2, 4, and 6 h after exposure. Rats were killed at 6 or 24 h. Injury to airway and alveolar epithelia was assessed by quantitative morphology, protein concentrations, number of cells in bronchoalveolar lavage (BAL), and wet-to-dry lung weight ratio. Lipid peroxidation was assessed by measurement of lung F(2)-isoprostanes. Rats developed severe, but transient, hypoxemia. A significant increase of protein concentration, neutrophil numbers, airway epithelia in the BAL, and lung wet-to-dry weight ratio was evident at 6 h after Cl(2) exposure. Quantitative morphology revealed extensive lung injury in the upper airways. Airway epithelial cells stained positive for terminal deoxynucleotidyl-mediated dUTP nick end labeling (TUNEL), but not caspase-3. Administration of NO(2)(-) resulted in lower BAL protein levels, significant reduction in the intensity of the TUNEL-positive cells, and normal lung wet-to-dry weight ratios. F(2)-isoprostane levels increased at 6 and 24 h after Cl(2) exposure in NO(2)(-)- and saline-injected rats. This is the first demonstration that systemic NO(2)(-) administration mitigates airway and epithelial injury.


Assuntos
Exposição por Inalação , Lesão Pulmonar/patologia , Lesão Pulmonar/prevenção & controle , Nitrito de Sódio/administração & dosagem , Nitrito de Sódio/farmacologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , Cloro , F2-Isoprostanos/metabolismo , Marcação In Situ das Extremidades Cortadas , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/fisiopatologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/fisiopatologia , Masculino , Dióxido de Nitrogênio/metabolismo , Oxigênio/metabolismo , Ratos , Ratos Sprague-Dawley , Respiração/efeitos dos fármacos
20.
Proc Am Thorac Soc ; 7(4): 264-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20601630

RESUMO

Inhalation experiments using laboratory animals are performed under controlled conditions to assess the toxicity of and to investigate interventional strategies to ameliorate injury resulting from oxidant gas exposures. A variety of dynamic inhalation exposure systems that use whole-body or nose-only exposure chambers have been developed for rodents. In a whole-body exposure chamber, the animals are immersed in the test atmosphere, whereas in nose-only or head-only exposure systems, exposures are localized primarily to the head and/or nasal regions. There are advantages and disadvantages with both types of exposure approaches. Considerations such as animal number, exposure duration, end points of study, and availability of test material should influence the selection of a particular exposure system.


Assuntos
Câmaras de Exposição Atmosférica , Cloro/toxicidade , Gases/toxicidade , Modelos Animais , Nariz , Animais , Desenho de Equipamento , Exposição por Inalação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...